Ultra-Weak Fiber Bragg Grating Sensing Network Coated with Sensitive Material for Multi-Parameter Measurements

نویسندگان

  • Wei Bai
  • Minghong Yang
  • Chenyuan Hu
  • Jixiang Dai
  • Xuexiang Zhong
  • Shuai Huang
  • Gaopeng Wang
چکیده

A multi-parameter measurement system based on ultra-weak fiber Bragg grating (UFBG) array with sensitive material was proposed and experimentally demonstrated. The UFBG array interrogation principle is time division multiplex technology with two semiconductor optical amplifiers as timing units. Experimental results showed that the performance of the proposed UFBG system is almost equal to that of traditional FBG, while the UFBG array system has obvious superiority with potential multiplexing ability for multi-point and multi-parameter measurement. The system experimented on a 144 UFBG array with the reflectivity of UFBG ~0.04% for the four target parameters: hydrogen, humidity, temperature and salinity. Moreover, a uniform solution was customized to divide the cross-sensitivity between temperature and other target parameters. It is expected that this scheme will be capable of handling thousands of multi-parameter sensors in a single fiber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-High Sensitive Strain Sensor Based on Post-Processed Optical Fiber Bragg Grating

An ultra-high sensitive strain sensor is proposed. The sensing head, based on the post-processing of a fiber Bragg grating, is used to perform passive and active strain measurements. Both wavelength and full width half maximum dependences with the applied strain are studied for the passive sensor, where maximum sensitivities of 104.1 pm/με and 61.6 pm/με are respectively obtained. When combinin...

متن کامل

Multi-parameter Sensing System Using Sampled Fiber Bragg Grating

We propose a Gaussian sampled fiber Bragg grating for multi-parameter sensing system. The sampled fiber Bragg grating combines the characteristics of fiber Bragg grating and long period grating. The transfer matrix method has been used to obtain the transmission spectrum of the grating. The shifts in narrowband loss peak and broadband loss peak in the transmission spectrum have been utilized to...

متن کامل

Salinity sensor based on polyimide-coated photonic crystal fiber.

We proposed and experimentally demonstrated a highly sensitive salinity sensor using a polyimide-coated Hi-Bi photonic crystal fiber Sagnac interferometer based on the coating swelling induced radial pressure. This is the first time to exploit fiber coating induced pressure effect for salinity sensing. The achieved salinity sensitivity is 0.742 nm/(mol/L), which is 45 times more sensitive than ...

متن کامل

CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating.

The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the s...

متن کامل

Integrated optical fiber shape senor modules based on twisted multicore fiber grating arrays

In this paper we report on the development of a complete integrated optical fiber assembly suitable for shape sensing. Our shape sensor module consists of a length (>1m) of twisted multicore optical fiber with fiber Bragg gratings inscribed along its length. Our fiber has a compact 180 micron coated diameter, a twist of 50 turns per meter and grating reflectivities greater than 0.01% per cm of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017